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Abstract. A simple growth model with screening is presented to mimic the forest formation.
The tree grows independently if it is not screened by other trees but the growth of the tree
stops when it is screened by other trees. The height distribution of trees is found to scale
as h™Y (1< y<2) by computer simulations. It is shown that the patiern of the forest is a
self-affine fractal. The scaling exponent y is also calculated by using a Monte Carlo
renormalization-group method. The values of the exponent y agree with those of the
simuiation,

Recently there has been increasing interest in a variety of non-equilibrium aggregation
and deposition models such as the diffusion-limited aggregation (Di.A) madel and the
ballistic deposition. Much of this interest stems from the fact that in addition to their
connection with processes of fundamental practical importance, such as thin-film
growth and crystal growth, these models exhibit non-trivial scaling behaviour (Witten
and Sander 1981, Family and Landau 1984, Herrmann 1986, Julien and Botet 1987,

Stanley and Ostrowsky 1988, Feder 1988, Vicsek 1989). A varicty of computer simula-
tions have been carried out to investigate the relationships between the cluster geometry
and growth mechanisms. The structure of the aggregates strongly depends on the
dynamics of the growth process. The most simple growth models are the ballistic
deposition and the diffusion-limited aggregation. The ballistic deposition model pro-
vides a basis for understanding deposition processes used to prepare a wide variety
of thin-film devices. The diffusion-limited aggregation model presents a prototype of
the pattern formation of diffusive systems including the electrochemical deposition,
crystal growth, viscous fingering and dielectric breakdown.

Very recently, Meakin (1988) and Krug and Meakin (1989) investigated numerically
and analytically the microstructure (columnar morphology) and surface scaling struc-
ture in ballistic deposition at oblique incidence. They found the static and dynamic

surface exponents by idealizing the columnar structure as an array of rods and mapping

the problem onto a systemn of coalescing Brownian particles. They took into account
only the mutual screening of neighbouring rods: if the tip of the jth rod is screened
by the (j+1)th, the corresponding particles coalesce and continue to grow as one.
They have not performed the direct simulation for the idealized system.

In this letter, we present a simple growth model with screening. The model is a
generalized one of the idealized ballistic model at oblique incidence. The model is
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described by the governing equation

%’%’= Ol = h HARYO(h — hia +24R) ... 8(h;—hi v nAR) .. hTE(D) )
where h; is the height of a tree on the site i, #(x) is the step function, Ah is the slope
of the inclined light and £(¢) is white noise in space and time with non-zero mean.
Imagine the forest formation. The tree is assumed as a stick. The tree is assumed to
grow only in the light of sun. The sunlight streams in on the right-hand side., Each
tree grows independently and randomly with a height dependent growth rate A7 only
if the tree is not screened by other trees. When the tree is screened by other trees, the
tree does not grow. Figure 1 shows the model. If the tip of the tree is screened by
other trees, the tip of the tree becomes inactive. The tree screened by other trees is
represented by the broken line. The inactive tip of trees is indicated by the triangle.
The tip of trees not screened by other trees is indicated by the circle, The tip is active.
The active tree is indicated by the full line. Ah is the slope of the sunlight. 8(h, — h;., +
Ah), 6(h;—h,,+2Ah) and 6(h;—h;,,+nAh) represent respectively the screening
effects of the trees on the sites i+ 1, i+2 and i + n to the tree on the site i If the height
of the tree on the site i+n is greater than h,+nAh, the tree on the site i+n screens
the sunlight to the tree on the site i. The screening effect is given by 8{(k — b, T rAR).
The growth rate of each tree is given by h{ if the tree is not screened by the other
trees. In the case of a =0, the idealized ballistic model at oblique incidence, which
was devised by Krug and Meakin (1989), is reproduced. In our model, the mutual
screening not only of neighbouring sticks but also all rods on the right-hand side is
taken into account. The pattern of the forest formation obtained by the simulation
with use of (1) is shown in figure 2 for a =0, Ah=0.5 and L =400, where L is the
width of the system, and the lateral boundary condition is periodic.

Figure 3 shows the mass scaling against the height for Ah=0.5, 1 and 2 in the
log-log plot (a =0 and L=23000). The mass scaling depends weakly on the slope of
sunlight. For 1« h « L, the mass scales as

M(h)=~h* ' (2)

lig ht

o

s active site
4+ inactive site

Figure 1. Illustration of the simple growth model with screening. The sunlight streams in
on the right-hand side, Each tree grows independently and randomly if the tree is not
screened by other trees. If it is screened by other trees, its growth stops. The screened and
the unscreened trees are indicated by the broken and the full lines.
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Figure 3. The mass scaling against the height for Ah=0.5, 1 and 2 (@ =0 and L =3000)
in the log-log plot.

with 8 =0.453:0.03 (Ah=0.5), B=0.55+£0.03 (Ah=1), 8 =0.69+£0.03 (Ah=2). The
height distribution of trees is related with the mass as follows:

L]
M(h)=J' hf(h) dh (3)
o
where f{h) is the height distribution of trees. If one assumes
flhy=h"" (4)
the height distribution exponent y is given by
y=2-4 (5)

The above scaling structures of the mass and the height distribution have not been
found in the idealized ballistic model by Krug and Meakin (1989). In their model,
only mutual screening of neighbourhood sticks was taken into account. However, the
screening effect of all sticks on the right-hand side was not taken into account. The
scaling structure of the height distribution is due to the screening effect of all sticks.

Figure 4 shows the mass scaling against the height for « = —1, —0.5, 0, 0.5, 1.2 in
the log-log plot (Ah=0.5, L =300). Table 1 shows the exponents &, 8 and y. If a <0,
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Figure 4. The dependence of the mass scaling against the height upon a in the tog-log
plot for a =—1, —0.5, 0, 0.5, 1.2 (Ah =0.5 and L=300).

Table 1. Mass exponent 8 and height distribution exponent y for & (Ah=0.5, L=7300).
The errors of the exponents B and y are about £0.03,

a (—a0) —1 —0.5 0 0.5 1.2 ()
: B (1} 0.743 0.594 0.45 0.25 0.167 ()]
y {n 1.275 1.406 1.5% 175 1.833 (2)

the growth rate of each tree decreases with increasing height. If « > 0, the growth rate
increases with the height. In the limit of & - —00, the dense pattern appears and 8 =1.
In the limit of a - 00, the pattern becomes a single tree and 8 =0.

We construct the deterministic fractal model by iterating the generator. Figure 5
shows the deterministic model for the height distribution (¢ =0). Figure 5(a) and
figure 5(b)} represent respectively the first stage and the second stage of the iteration.
The deterministic model is constructed by iterating the generator (figure 5(a)). The
vertical line is replaced by shrinking the generator by 25% in height and by 12.5% in
width. The pattern is a self-affine fractal. Then the height distribution with the scaling
F(h)=h~'* is obtained.

We calculate the scaling exponent 8 by using a position-space renormalization-
group method. First, we consider a small cell renormalization with scale factor b=2.
Consider a growth process within the 2% 2 cell (see figure 6). Set Ah =1. The lateral
boundaries are periodic. We assume a self-organized criticality for a state when the
height of the tree reaches the upper boundary. Configurations (b) or (c) in figure 6
are obtained by adding a particle to configuration (a). The configurational prababilities
P, and p, are given by 2%/(1+42%) and 1/(1+2%). Configuration (d) is obtained by
adding a particle to configuration {c¢) with probability one. Configurations (b) and (d)
are in a self-organized critical state. Then the mass M, within the cell is assumed to
be given by the mean value

M,=[27/(1+2")]2+[1/(1 +27)]3. (6)
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(b)
Figure §. The deterministic fractal model. (¢) The generator and the first stage. {b) The
second stage. The vertical line is replaced by shrinking generator by 25% in height and by

12.5% in width,
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Figure 6. All distinct configurations of the 2x 2 cell for small cell renormalization.

The exponent B is given by
pA=InM,/In2-1 (7)
for @ =0, B =0.322. For b=3, we obtain 8 = 0.401 (a« =0and Ah =1). For larger cells,

the b x b cell. The lateral boundaries are periodic. The growth process continues until
a tree connects with the top of the cell. This growth process is repeated 100 times. The
total mass within the cell is calculated and is averaged over 100 Monte Carlo reatizations.
Table 2 shows the values of the mass exponent 38 (« =0) obtained by a Monte Carlo
renormalization method for Ah=0.5, 1 and 2. This method gives quick convergence
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Table 2. The values of the mass exponent 8 {a =0) obtained by Monte Carlo renormaliz-
ation group method for Ah=0.5, 1 and 2. Each result is averaged over 100 samples.

b Ah=0.5 Ah=1 Ah=12

5 0.394 0.513 0.662

7 0.427 0.553 0.674
10 0.439 0.552 0.675
135 0.433 0.555 0.700
20 0.436 0.550 0.694
30 0.432 0.547 0.693
50 0.433 0.551 0.683

(0.43£0.01) (0.55x0.01) (0.68+0.01)

with an increase in the cell size. With relatively smaii ceiis, we obtain values in excellent
agreement with the large-size simulation result.

In summary, we present a simple growth model with screening to mimic the forest
formation, We find that the height distribution of trees shows a power law of height.
We give the scaling exponent by computer simulation. Also we calculate the scaling

exponent by using a Monie Carlo renormalizaiion method.

The author wishes to thank H E Stanley and Jysoo Lee for especially helpful conversa-
tions,
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