
Scaling structure in a simple growth model with screening: forest formation model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1991 J. Phys. A: Math. Gen. 24 L449

(http://iopscience.iop.org/0305-4470/24/8/011)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 14:12

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/24/8
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A Math. Gen. 24 (1991) I.449-L454. Printed in  the UK 

LElTER TO THE EDITOR 

Scaling structure in a simple growth model with screening: 
fnrert fnrmntinr mnde! 

Takashi Nagatani 
College of Engineering, Shizuaka University, Hamamatsu 432, Japan and Center for 
Polymer Studies and Department of Physics, Boston University, Boston, MA 02215, USA 

Received 3 December 1990 

Abstract. A simple growth model with screening is presented to mimic the forest formation. 
The tree grows independently if it is not screened by other trees but the growth of the tree 
stops when it is screened by other trees. The height distribution of trees is found to scale 
as hKr (1 c y c 2 )  by computer simulations. It is shown that the pattern of the forest is a 
self-affine fractal. The scaling exponent y is also calculated by using a Monte Carlo 
renormali~ation-group method. The values of the exponent y agree with those of the 
simulation. 

Recently there has been increasing interest in a variety of non-equilibrium aggregation 
and deposition models such as the diffusion-limited aggregation (DLA) model and the 
ballistic deposition. Much of this interest stems from the fact that in addition to their 
connection with processes of fundamental practical importance, such as thin-film 
growth and crystal growth, these models exhibit non-trivial scaling behaviour (Witten 
and Sander 1981, Family and Landau 1984, Herrmann 1986, Julien and Botet 1987, 
JLdlllCY 'ill" v s u v w a n y  lj.00, rcuCi1 ,700, *LC>Th ,707,. n varrr;ry U1 C"."puLCL 31111Y1'l- 

tions have been carried out to investigate the relationships between the cluster geometry 
and growth mechanisms. The structure of the aggregates strongly depends on the 
dynamics of the growth process. The most simple growth models are the ballistic 
deposition and the diffusion-limited aggregation. The ballistic deposition model pro- 
vides a basis for understanding deposition processes used to prepare a wide variety 
of thin-film devices. The diffusion-limited aggregation model presents a prototype of 
the pattern formation of diffusive systems including the electrochemical deposition, 
crystal growth, viscous fingering and dielectric breakdown. 

Very recently, Meakin (1988) and Krug and Meakin (1989) investigated numerically 
and analytically the microstructure (columnar morphology) and surface scaling struc- 
ture in ballistic deposition at oblique incidence. They found the static and dynamic 
-..- __-I L.. :~~~l&:.... +ha r.4..mnar C+I.lnt...n On nFrnAc - - A  mgn..:n_ 
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the problem onto a system of coalescing Brownian particles. They took into account 
only the mutual screening of neighbouring rods: if the tip of the j t h  rod is screened 
by the ( j + l ) t h ,  the corresponding particles coalesce and continue to grow as one, 
They have not performed the direct simulation for the idealized system. 

In this letter, we present a simple growth model with screening. The model is a 
generalized one of the idealized ballistic model at oblique incidence. The model is 
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described by the governing equation 

%= S ( h ,  - hi+ ,  + A h ) O ( h j  - h i + , + 2 A h ) .  . . Ojh; - hi+ ,  + n A h )  . . . h y & ( t )  (1) J t  

where hi is the height of a tree on the site i, O(x) is the step function, A h  is the slope 
of the inclined light and & ( f )  is white noise in space and time with non-zero mean. 
Imagine the forest formation. The tree is assumed as a stick. The tree is assumed to 
grow only in the light of sun. The sunlight streams in on the right-hand side, Each 
tree grows independently and randomly with a height dependent growth rate hp only 
if the tree is not screened by other trees. When the tree is screened by other trees, the 
tree does not grow. Figure 1 shows the model. If the tip of the tree is screened by 
other trees, the tip of the tree becomes inactive. The tree screened by other trees is 
represented by the broken line. The inactive tip of trees is indicated by the triangle. 
The tip of trees not screened by other trees is indicated by the circle. The tip is active. 
The active tree is indicated by the full line. A h  is the slope of the sunlight. b'( hi - hi+ ,  + 
A h ) ,  O ( h , -  h i + , + 2 A h )  and O(hi  - h,+,+ n A h )  represent respectively the screening 
effects of the trees on the sites i + 1, i f 2  and i +  n to the tree on the site i. If the height 
of the tree on the site i + n  is greater than h i + n A h ,  the tree on the site i+n screens 

The growth rate of each tree is given by h y  if the tree is not screened by the other 
trees. In the case of (I = 0, the idealized ballistic model at oblique incidence, which 
was devised by Krug and Meakin (1989), is reproduced. In our model, the mutual 
screening not only of neighbouring sticks but also all rods on the right-hand side is 
taken into account. The pattern of the forest formation obtained by the simulation 
with use of (1) is shown in figure 2 for a = 0, A h  = 0.5 and L = 400, where L is the 
width of the system, and the lateral boundary condition is periodic. 

Figure 3 shows the mass scaling against the height for A h  = O S ,  1 and 2 in the 
log-log plot (a = O  and L=3OOO). The mass scaling depends weakly on the slope of 

.I-- "....,:..t.. I.. *I.̂  A--?. -- ,L" ":.̂  : a- -,.-..e..:'." -aI...* :" .-: L.. d l L  t. I - A  '\ 
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sunlight. For 1 << h << L, the mass scales as 

M ( h ) = h P  

light 

A inactive site 

Figure 1. Illustration of the simple growth model with screening. The sunlight streams in 
on the right-hand side. Each tree grows independently and randomly if the tree is not 
screened by other trees. I f  it is screened by other trees, its growth stops. The screened and 
the unscreened trees are indicated by the broken and the full lines. 
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Figure 2. The pattern obtained by simulation for U =0, Ah = O S  and L=400 

Figure 3. The mass scaling against the height for A h = 0 . 5 ,  I and 2 (a = O  and L=3000)  
in the log-log plot. 

with /3=0.45+0.03 (Ah=0.5), p=0.55+0.03 ( A h = l ) ,  p=0.69+0.03 (Ah=2). The 
height distribution of trees is related with the mass as follows: 

M ( h ) =  hf(h)dh Ioh (3) 

where f ( h )  is the height distribution of trees. If one assumes 

f ( h ) = h - '  (4) 

the height distribution exponent y is given by 

y = 2 - p .  

The above scaling structures of the mass and the height distribution have not been 
found in the idealized ballistic model by Krug and Meakin (1989). In their model, 
only mutual screening of neighbourhood sticks was taken into account. However, the 
screening effect of all sticks on the right-hand side was not taken into account. The 
scaling structure of the height distribution is due to the screening effect of all sticks. 

Figure 4 shows the mass scaling against the height for a = -1, -0.5, 0, 0.5, 1.2 in 
the log-log plot (Ah =OS, L=300). Table 1 shows the exponents a, 0 and y, If a (0, 
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Figure 4. The dependence of the mass scaling against the height upon U in the log-log 
p l a t f o r a = - l , - 0 . 5 , 0 , 0 . 5 , 1 . 2 ( A h = 0 . 5 a n d  L=300).  

Table 1. Mass exponent p and height distribution exponent y for CL ( A h  = O S ,  L=30O). 
The errors of the exponents p and Y are about +0.03. 

~ 

OL (-m) -1  -0.5 0 0.5 1.2 (m) 
P (1) 0.743 0.594 0.45 0.25 0.167 (0) 
r (I) 1.275 1.406 1.55 1.75 1.833 (2) 

the growth rate of each tree decreases with increasing height. If a > 0, the growth rate 
increases with the height. In the limit of a + -w, the dense pattern appears and p = 1. 
In the limit of a +a, the pattern becomes a single tree and p = 0. 

We construct the deterministic fractal model by iterating the generator. Figure 5 
shows the deterministic model for the height distribution (a =O). Figure 5(a) and 
figure 5 ( b )  represent respectively the first stage and the second stage of the iteration. 
The deterministic model is constructed by iterating the generator (figure 5(a)). The 
vertical line is replaced by shrinking the generator by 25% in height and by 12.5% in 
width. The pattern is a self-affine fractal. Then the height distribution with the scaling 
f( h )  = h-'.' is obtained. 

We calculate the scaling exponent p by using a position-space renormalization- 
group method. First, we consider a small cell renormalization with scale factor b = 2. 
Consider a growth process within the 2 x 2  cell (see figure 6 ) .  Set Ah = 1. The lateral 
boundaries are periodic. We assume a self-organized criticality for a state when the 
height of the tree reaches the upper boundary. Configurations ( b )  or ( c )  in figure 6 
are obtained by adding a particle to configuration (a). The configurational probabilities 
p b  and pc are given by 2"/(1+2") and 1/(1+2"). Configuration ( d )  is obtained by 
adding a particle to configuration ( c )  with probability one. Configurations ( b )  and ( d )  
are in a self-organized critical state. Then the mass M ,  within the cell is assumed to 
be given by the mean value 

M2 = [2"/(1+2")]2+[ 1/( 1 +2")13. ( 6 )  
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Figure 5. The deterministic fractal model. ( a )  The generator and the first stage. ( b )  The 
second stage. The vertical line is replaced by shrinking generator by 25% in heighl and by 
!2.5% i!! Wid!h. 

(C) (d) 

Figure 6. All distinct configurations of the 2 x  2 cell for small cell renormalization. 

The exponent p is given by 

p = In MJln 2 - 1 (7) 

for a = 0, p = 0.322. For b = 3, we obtain p = 0.401 ( 0  = 0 and Ah = I ) .  For larger cells, 
we apply a Monte Carlo renormalization method. Consider a growth process within 
the b x b cell. The lateral boundaries are periodic. The growth process continues until 
a tree connects with the top of the cell. This growth process is repeated 100 times. The 
total mass within the cell is calculated and is averaged over 100 Monte Carlo realizations. 
Table 2 shows the values of the mass exponent p (a = 0)  obtained by a Monte Carlo 
renormalization method for Ah =OS, 1 and 2. This method gives quick convergence 
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Table 2. The values of the mass exponent B (a = 0) obtained by Monte Carlo renarmaliz- 
ation group method for Ah = 0.5, 1 and 2. Each result is averaged over 100 samples. 

b Ah =0.5 A h = l  Ah=2 

5 0.394 
7 0.427 

I O  0.439 
15 0.433 
20 0.436 
30 0.432 
50 0.433 

(0.43 +0.01) 

0.513 0.662 
0.553 0.674 
0.552 0.675 
0.555 0.700 
0.550 0.694 
0.547 0.693 
0.551 0.683 

(0.55 * 0.01) (0.68 + 0.01) 

with an increase in the cell size. With relatively small celk, we obtain values in excellent 
agreement with the large-size simulation result. 

In summary, we present a simple growth model with screening to mimic the forest 
formation. We find that the height distribution of trees shows a power law of height. 
We give the scaling exponent by computer simulation. Also we calculate the scaling 
exponeni by using a ivionie Cario reuormaiizaiion rtirihod. 

The author wishes to thank H E Stanley and Jysoo Lee for especially helpful conversa- 
tions. 
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